Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 122023 03 16.
Article in English | MEDLINE | ID: covidwho-2288502

ABSTRACT

Background: Although inactivated COVID-19 vaccines are proven to be safe and effective in the general population, the dynamic response and duration of antibodies after vaccination in the real world should be further assessed. Methods: We enrolled 1067 volunteers who had been vaccinated with one or two doses of CoronaVac in Zhejiang Province, China. Another 90 healthy adults without previous vaccinations were recruited and vaccinated with three doses of CoronaVac, 28 days and 6 months apart. Serum samples were collected from multiple timepoints and analyzed for specific IgM/IgG and neutralizing antibodies (NAbs) for immunogenicity evaluation. Antibody responses to the Delta and Omicron variants were measured by pseudovirus-based neutralization tests. Results: Our results revealed that binding antibody IgM peaked 14-28 days after one dose of CoronaVac, while IgG and NAbs peaked approximately 1 month after the second dose then declined slightly over time. Antibody responses had waned by month 6 after vaccination and became undetectable in the majority of individuals at 12 months. Levels of NAbs to live SARS-CoV-2 were correlated with anti-SARS-CoV-2 IgG and NAbs to pseudovirus, but not IgM. Homologous booster around 6 months after primary vaccination activated anamnestic immunity and raised NAbs 25.5-fold. The neutralized fraction subsequently rose to 36.0% for Delta (p=0.03) and 4.3% for Omicron (p=0.004), and the response rate for Omicron rose from 7.9% (7/89)-17.8% (16/90). Conclusions: Two doses of CoronaVac vaccine resulted in limited protection over a short duration. The inactivated vaccine booster can reverse the decrease of antibody levels to prime strain, but it does not elicit potent neutralization against Omicron; therefore, the optimization of booster procedures is vital. Funding: Key Research and Development Program of Zhejiang Province; Key Program of Health Commission of Zhejiang Province/ Science Foundation of National Health Commission; Major Program of Zhejiang Municipal Natural Science Foundation; Explorer Program of Zhejiang Municipal Natural Science Foundation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Cohort Studies , Cross-Sectional Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral , China
2.
Front Immunol ; 13: 967051, 2022.
Article in English | MEDLINE | ID: covidwho-2043445

ABSTRACT

Background: BBIBP-CorV and CoronaVac inactivated COVID-19 vaccines are widely-used, World Health Organization-emergency-listed vaccines. Understanding antibody level changes over time after vaccination is important for booster dose policies. We evaluated neutralizing antibody (nAb) titers and associated factors for the first 12 months after primary-series vaccination with BBIBP-CorV and CoronaVac. Methods: Our study consisted of a set of cross-sectional sero-surveys in Zhejiang and Shanxi provinces, China. In 2021, we enrolled 1,527 consenting 18-59-year-olds who received two doses of BBIBP-CorV or CoronaVac 1, 3, 6, 9, or 12 months earlier and obtained blood samples and demographic and medical data. We obtained 6-month convalescent sera from 62 individuals in Hebei province. Serum nAb titers were measured by standard micro-neutralization cytopathic effect assay in Vero cells with ancestral SARS-CoV-2 strain HB01. We used the first WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (NIBSC code 20/136) to standardized geometric mean concentrations (IU/mL) derived from the nAb geometric mean titers (GMT over 1:4 was considered seropositive). We analyzed nAb titer trends using Chi-square and factors related to nAb titers with logistic regression and linear models. Results: Numbers of subjects in each of the five month-groupings ranged from 100 to 200 for each vaccine and met group-specific target sample sizes. Seropositivity rates from BBIBP-CorV were 98.0% at 1 month and 53.5% at 12 months, and GMTs were 25.0 and 4.0. Respective seropositivity rates from CoronaVac were 90.0% and 62.5%, and GMTs were 20.2 and 4.1. One-, three-, six-, nine-, and twelve-month GMCs were 217.2, 84.1, 85.7, 44.6, and 10.9 IU/mL in BBIBP-CorV recipients and 195.7, 94.6, 51.7, 27.6, and 13.4 IU/mL in CoronaVac recipients. Six-month convalescent seropositivity was 95.2%; GMC was 108.9 IU/mL. Seropositivity and GMCs were associated with age, sex, and time since vaccination. Conclusions: Neutralizing Ab levels against ancestral SARS-CoV-2 from BBIBP-CorV or CoronaVac vaccination were similar and decreased with increasing time since vaccination; over half of 12-month post-vaccination subjects were seropositive. Seropositivity and GMCs from BBIBP-CorV and CoronaVac six and nine months after vaccination were similar to or slightly lower than in six-month convalescent sera. These real-world data suggest necessity of six-month booster doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Chlorocebus aethiops , Cross-Sectional Studies , Humans , Immunization, Passive , SARS-CoV-2 , Vaccination , Vero Cells , COVID-19 Serotherapy
3.
Front Immunol ; 13: 939311, 2022.
Article in English | MEDLINE | ID: covidwho-2022716

ABSTRACT

Background: Owing to the coronavirus disease 2019 (COVID-19) pandemic and the emergency use of different types of COVID-19 vaccines, there is an urgent need to consider the effectiveness and persistence of different COVID-19 vaccines. Methods: We investigated the immunogenicity of CoronaVac and Covilo, two inactivated vaccines against COVID-19 that each contain inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The levels of neutralizing antibodies to live SARS-CoV-2 and the inhibition rates of neutralizing antibodies to pseudovirus, as well as the immunoglobulin (Ig)G and IgM responses towards the spike (S) and nucleocapsid (N) protein of SARS-CoV-2 at 180 days after two-dose vaccination were detected. Results: The CoronaVac and Covilo vaccines induced similar antibody responses. Regarding neutralizing antibodies to live SARS-CoV-2, 77.9% of the CoronaVac vaccine recipients and 78.3% of the Covilo vaccine recipients (aged 18-59 years) seroconverted by 28 days after the second vaccine dose. Regarding SARS-CoV-2-specific antibodies, 97.1% of the CoronaVac vaccine recipients and 95.7% of the Covilo vaccine recipients seroconverted by 28 days after the second vaccine dose. The inhibition rates of neutralizing antibody against a pseudovirus of the SARS-CoV-2 Delta variant were significantly lower compared with those against a pseudovirus of wildtype SARS-CoV-2. Associated with participant characteristics and antibody levels, persons in the older age group and with basic disease, especially a chronic respiratory disease, tended to have lower anti-SARS-CoV-2 antibody seroconversion rates. Conclusion: Antibodies that were elicited by these two inactivated COVID-19 vaccines appeared to wane following their peak after the second vaccine dose, but they persisted at detectable levels through 6 months after the second vaccine dose, and the effectiveness of these antibodies against the Delta variant of SARS-CoV-2 was lower than their effectiveness against wildtype SARS-CoV-2, which suggests that attention must be paid to the protective effectiveness, and its persistence, of COVID-19 vaccines on SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , Aged , Antibodies, Neutralizing , Antibodies, Viral , Attention , COVID-19 Vaccines , Cohort Studies , Humans , Immunoglobulin G , SARS-CoV-2
4.
Clin Infect Dis ; 75(1): e1072-e1081, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1769226

ABSTRACT

BACKGROUND: The longitudinal antigen-specific immunity in COVID-19 convalescents is crucial for long-term protection upon individual re-exposure to SARS-CoV-2, and even more pivotal for ultimately achieving population-level immunity. We conducted this cohort study to better understand the features of immune memory in individuals with different disease severities at 1 year post-disease onset. METHODS: We conducted a systematic antigen-specific immune evaluation in 101 COVID-19 convalescents, who had asymptomatic, mild, moderate, or severe disease, through 2 visits at months 6 and 12 after disease onset. The SARS-CoV-2-specific antibodies, comprising neutralizing antibody (NAb), immunoglobulin (Ig) G, and IgM, were assessed by mutually corroborated assays (ie, neutralization, enzyme-linked immunosorbent assay [ELISA], and microparticle chemiluminescence immunoassay [MCLIA]). Meanwhile, T-cell memory against SARS-CoV-2 spike, membrane, and nucleocapsid proteins was tested through enzyme-linked immunospot assay (ELISpot), intracellular cytokine staining, and tetramer staining-based flow cytometry, respectively. RESULTS: SARS-CoV-2-specific IgG antibodies, and NAb, can persist among >95% of COVID-19 convalescents from 6 to 12 months after disease onset. At least 19/71 (26%) of COVID-19 convalescents (double positive in ELISA and MCLIA) had detectable circulating IgM antibody against SARS-CoV-2 at 12 months post-disease onset. Notably, numbers of convalescents with positive SARS-CoV-2-specific T-cell responses (≥1 of the SARS-CoV-2 antigen S1, S2, M, and N proteins) were 71/76 (93%) and 67/73 (92%) at 6 and 12 months, respectively. Furthermore, both antibody and T-cell memory levels in the convalescents were positively associated with disease severity. CONCLUSIONS: SARS-CoV-2-specific cellular and humoral immunities are durable at least until 1 year after disease onset.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Cohort Studies , Humans , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL